📄️ 概述
到目前为止,我们已经看到了许多提示/提示工程方法。现在,我们将讨论一些关于提示的高级应用程序,通过互联网或其他外部来源搜索信息来解决复杂的推理任务。
📄️ 🟡 LLMs使用工具
MRKL系统(@karpas2022mrkl) (Modular Reasoning, Knowledge and Language, pronounced "miracle") 是一种神经符号结构,结合了LLMs(神经计算)和像计算器(符号计算)这样的外部工具,用于解决复杂问题。
📄️ 🟡 具有推理和行动能力的LLMs
ReAct(@yao2022react)(reason, act)是一种使用自然语言推理解决复杂任务的语言模型范例。ReAct旨在用于允许LLM执行某些操作的任务。例如,在MRKL系统中,LLM可以与外部API交互以检索信息。当提出问题时,LLM可以选择执行操作以检索信息,然后根据检索到的信息回答问题。
📄️ 🟡 代码推理
程序辅助语言模型(Program-aided Language Models, PAL)(@gao2022pal) 是另一个MRKL系统的例子。给定一个问题,PAL能够编写代码解决这个问题。它将代码发送到编程运行时以获得结果。PAL的中间推理是代码,而CoT的是自然语言。